21:09
0

ประเภทไม่มีสาย
1. ระบบไมโครเวฟ (Microwave System) กลไกของการสื่อสารและรับสัญญาณของไมโครเวฟใช้จานสะท้อนรูปพาลาโบลา เป็นระบบที่ใช้วิธีส่งสัญญาณที่มีความถี่สูงกว่าคลื่นวิทยุเป็นทอดๆ จากสถานีหนึ่งไปยังอีกสถานีหนึ่ง และสัญญาณของไมโครเวฟจะเดินทางเป็นเส้นตรง ดังนั้นสถานีจะต้องพยายามอยู่ในที่สูงๆ สถานีหนึ่งๆ จะ ครอบคลุมพื้นที่ที่รับสัญญาณได้ 30-50 กม. ความเร็วในการส่งข้อมูล 200-300 Mbps ระยะทาง 20-30 mile และยังขึ้นอยู่กับความสูงของเสาสัญญาณด้วย

รูปที่ 5 ระบบไมโครเวฟ
 

ข้อดีและข้อเสียของระบบไมโครเวฟ
ข้อดี
1. ใช้ในพื้นที่ซึ่งการเดินสายกระทำได้ไม่สะดวก
2. ราคาถูกกว่าสายใยแก้วนำแสงและดาวเทียม
3. ติดตั้งง่ายกว่าสายใยแก้วนำแสงและดาวเทียม
4. อัตราการส่งข้อมูลสูง
ข้อเสีย
สัญญาณจะถูกรบกวนได้ง่ายจากคลื่นแม่เหล็กไฟฟ้า จากธรรมชาติ เช่น พายุ หรือฟ้าผ่า
2. ระบบดาวเทียม (Satellite System) ใช้หลักการคล้ายกับระบบไมโครเวฟ ในส่วนของการยิงสัญญาณจากแต่ละสถานีต่อกันไปยังจุดหมายที่ต้องการ โดยอาศัยดาวเทียมที่โคจรอยู่รอบโลก ขั้นตอนในการส่งสัญญาณมี ทั้งหมด 3 ขั้นตอนคือ
2.1 สถานีต้นทางจะส่งสัญญาณขึ้นไปยังดาวเทียม เรียกว่าสัญญาณเชื่อมต่อขาขึ้น (Up-Link)
2.2 ดาวเทียมจะตรวจสอบตำแหน่งสถานีปลายทาง หากอยู่นอกเหนือขอบเขตสัญญาณจะส่งต่อไปยังดาวเทียมที่ครอบคลุมสถานีปลายทางนั้น
2.3 หากยู่ในขอบเขตพื้นที่ที่ครอบคลุมจะทำการส่งสัญญาณไปยังสถานีลายทาง เรียกว่าสัญญาณเชื่อมต่อขาลง (Down-Link) อัตราเร็วในการส่ง 1-2 Mbps


รูปที่ 6 ระบบดาวเทียม
 

ข้อดีและข้อเสียของระบบดาวเทียม
ข้อดี
1. ส่งสัญญาณครอบคลุมไปยังทุกจุดของโลกได้
2. ค่าใช้จ่ายในการให้บริการส่งข้อมูลของระบบดาวเทียมไม่ขึ้นอยู่กับระยะทางที่ห่างกันของสถานีพื้นดิน
ข้อเสีย 
มีเวลาหน่วง (Delay Time) ในการส่งสัญญาณ
3. ระบบอื่นๆ
3.1 ระบบวิทยุ (Radio Transmission) จะใช้คลื่นวิทยุในการส่งผ่านข้อมูลระหว่างคอมพิวเตอร์ จะมีปัญหากับการขออนุญาตใช้คลื่นความถี่
3.2 ระบบอินฟราเรด (Infrared Transmission) ใช้เทคโนโลยีเช่นเดียวกับ remote control ของเครื่องรับโทรทัศน์ จะมีข้อจำกัดที่ต้องใช้งานเป็นเส้นตรง ระหว่างเครื่องรับ และเครื่องส่ง รวมทั้งไม่อาจมีสิ่งกีดขวางด้วย
3.3 โทรศัพท์เคลื่อนที่ (Cellular Transmission) จะอาศัยการส่งสัญญาณของโทรศัพท์เคลื่อนที่ในการส่งผ่านข้อมูล

อุปกรณ์ที่ใช้ในการเชื่อมต่อบนระบบเครือข่าย
    นอกจากระบบเครือข่ายจะประกอบด้วยโหนด การ์ดเชื่อมต่อระบบเครือข่าย สายเคเบิล และหัวต่อเชื่อมแล้ว ระบบเครือข่ายยังต้องอาศัยอุปกรณ์ที่ต่อเชื่อม และในบางครั้งก็ต้องค้นหาเส้นทางการขนส่งข้อมูลระหว่างโหนด และระหว่างส่วนต่างๆ ของระบบเครือข่าย ซึ่งเชื่อมโยงกันเป็นระบบเครือข่ายขนาดใหญ่ขึ้น
1. อุปกรณ์รวมสัญญาณ
1.1 มัลติเพล็กซ์เซอร์ (Multiplexer) นิยมเรียกกันว่า มัก (MUX) เป็นอุปกรณ์ที่ใช้ในการรวมข้อมูล (multiplex) จากเครื่องเทอร์มินัล จำนวนหนึ่งเข้าด้วยกัน และส่งผ่านไปยังสายสื่อสารเดียวกัน และที่ปลายทาง MUX อีกตัวจะทำหน้าที่แยกข้อมูล (de-multiplex) ส่งไปยังจุดหมายที่ต้องการการ Mutiplexing  


รูปที่ 1 แสดงการทำงานของอุปกรณ์มัลติเพล็กเซอร์
 

การ multiplex เป็นวิธีการรวมข้อมูลจากหลายๆ จุด แล้วส่งผ่านไปตามสายส่งเพียงสายเดียว ซึ่งแบ่งได้เป็น 2 แบบคือ
การมัลติเพล็กซ์แบบแบ่งเวลา (Time Division Multiplexer หรือ TDM) เป็นวิธีที่เพิ่งจะได้รับการพัฒนาได้ไม่นาน การมัลติเพล็กซ์แบบแบ่งเวลาจะใช้เส้นทางเพียงเส้นทางเดียว และคลื่นพาห์ความถี่เดียวเท่านั้น แต่ผู้ใช้แต่ละคนจะได้รับการจัดสรรเวลาในการเข้าใช้ช่องสัญญาณเพื่อส่งข้อมูลไปยังปลายทาง


รูปที่ 2 แสดงการมัลติเพล็กซ์แบบแบ่งเวลา
 

การมัลติเพล็กซ์แบบแบ่งความถี่ (Frequency Division Multiplexer หรือ FDM) เป็นวิธีที่ใช้กันทั้งระบบที่มีสายและระบบคลื่นวิทยุ หลักการของการมัลติเพล็กซ์แบบแบ่งความถี่คือ การรวมสัญญาณจากแหล่งต่างๆ ให้อยู่ในคลื่นพาห์เดียวกันที่ความถี่ต่างๆ สัญญาณเหล่านี้สามารถที่จะใช้เส้นทางร่วมกันได้


1.2 คอนเซนเตรเตอร์ (Concentrator)

นิยมเรียกกันสั้นๆ ว่า คอนเซน เป็นมัลติเพลกเซอร์ที่มีประสิทธิภาพสูงขึ้น คือ



bullet
มีหน่วยความจำ (buffer) ที่ใช้เก็บข้อมูลเพื่อส่งต่อได้ ทำให้สามารถเชื่อมต่อระหว่างอุปกรณ์ที่มีความเร็วสูงกับความเร็วต่ำได้
bullet
มีการบีบอัดข้อมูล (compress) เพื่อให้สามารถส่งข้อมูลได้มากขึ้น

1.3 ฮับ (Hub)
ฮับเป็นอุปกรณ์ที่เห็นได้อย่างเด่นชัดในระบบเครือข่ายที่ใช้โทโปโลยีแบบดาว ในความเป็นจริงจะใช้ฮับอย่างแพร่หลายในระบบเครือข่าย 2 ประเภท คือ 10BaseT Ethernet และ Token Ring ซึ่งในระบบเครือข่ายแต่ละประเภท ฮับ จะเป็นศูนย์กลางการเชื่อมต่อโหนดต่างๆ และทำให้โหนดเหล่านี้สามารถติดต่อสื่อสารกันได้ โดย ทำการติดตั้งฮับไว้ที่ศูนย์กลางของโทโปโลยีแบบดาว โหนดแต่ละโหนดที่เข้ามามีส่วนร่วมในระบบเครือข่ายจะเชื่อมต่อผ่านฮับ และจะสื่อสารกันโดยส่งข้อมูลข่าวสารผ่านฮับ
     เมื่อมองจากภายนอกฮับจะมีจุดเชื่อมต่อที่เรียกว่า พอร์ต (port) ไว้จำนวนหนึ่ง สำหรับให้โหนดหรืออุปกรณ์ระบบเครือข่ายอื่นเชื่อมต่อเข้ามา เมื่อข้อมูลถูกส่งมาจากโหนดต่างๆ ที่เชื่อมต่ออยู่กับฮับ ข้อมูลนั้นๆ จะถูกทำสำเนาไปยังพอร์ตต่างๆ เพื่อให้แน่ใจว่าฮับจะสามารถส่งกระจายข้อมูลไปยังโหนดทุกตัวได้ นอกจากนี้ฮับยังมีอยู่หลายประเภท คือ



bullet
Intelligent Hub เป็นฮับที่สามารถจัดการควบคุมบางอย่างกับโหนดที่เชื่อมต่ออยู่
เช่น การอนุญาตให้ผู้บริหารระบบเครือข่ายควบคุมแต่ละพอร์ตได้อย่างอิสระ ไม่ว่าจะเป็นการสั่งให้ทำงาน หรือหยุดทำงานก็ตาม
Intelligent Hub บางประเภทสามารถเฝ้าติดตาม กิจกรรมของระบบเครือข่ายได้ เช่น ติดตามจำนวนแพ็กเกจที่ส่งผ่าน
และการเกิดความ ผิดพลาดขึ้นในแพ็กเกจเหล่านั้น
bullet
Standalone Hub เป็นอุปกรณ์ภายนอกที่เชื่อมต่อเข้ากับเครื่องคอมพิวเตอร์ เป็นฮับที่พบเห็นโดยทั่วไป
ซึ่งไม่มีความสามารถในการจัดการ มีเฉพาะความสามารถในการเชื่อมต่อไปยังฮับตัวอื่นเท่านั้น
bullet
Modular Hub เป็นฮับที่สามารถจัดการได้โดยมีลักษณะเป็น การ์ดสล็อต
การ์ดแต่ละตัวจะมีการทำงานเช่นเดียวกับ Standalone Hub 1 ตัว
การใช้ฮับประเภทนี้ทำให้สามารถขยายระบบเครือข่ายได้โดยง่าย บางตัวก็สามารถสนับสนุนการเชื่อมต่อ
กับเครือข่ายได้มากกว่า 1 ประเภท เช่น ใช้ได้กับระบบเครือข่ายทั้งแบบ Ethernet และ Token Ring


อุปกรณ์เชื่อมต่อเครือข่าย
1. รีพีตเตอร์ (Repeater)
   รีพีตเตอร์ เป็นอุปกรณ์ที่ทำงานอยู่ในระดับฟิสิคัลเลเยอร์ ( Physical Layer) ใน OSI Model มีหน้าที่เชื่อมต่อสำหรับขยายสัญญาณให้กับเครือข่าย เพื่อเพิ่มระยะทางในการรับส่งข้อมูลให้กับเครือข่ายให้ไกลออกไปได้กว่าปกติ ข้อจำกัด คือทำหน้าที่ในการส่งต่อสัญญาณที่ได้มาเท่านั้น จะไม่มีการเชื่อมต่อกับระบบเครือข่ายซึ่งอาศัยวิธีการ access ที่แตกต่างกัน เช่น Ethernet กับ Token Ring และไม่รู้จักลักษณะของข้อมูลที่แฝงมากับสัญญาณเลย
2. บริดจ์ (Bridge)
    บริดจ์ มักใช้ในการเชื่อมต่อวงแลน (LAN Segment) 2 วงเข้าด้วยกัน ทำให้สามารถขยายขอบเขตของ เครือข่ายออกไปเรื่อยๆ โดยที่ประสิทธิภาพรวมของระบบไม่ลดลงมากนัก โดยบริดจ์อาจเป็นได้ทั้งฮาร์ดแวร์เฉพาะ หรือ ซอฟแวร์บนเครื่องคอมพิวเตอร์ บริดจ์จะมีการทำงานที่ดาต้าลิ้งค์เลเยอร์ (Data Link Layer) ทำการกรองสัญญาณและส่งผ่านแพ็กเก็ตข้อมูลไปยังส่วนต่างๆ ของระบบเครือข่าย ซึ่งอาจจะเป็นส่วนของระบบเครือข่ายที่มีโครงสร้างสถาปัตยกรรมที่แตกต่างกันได้ เช่น บริดจ์สามารถเชื่อมโยงส่วนของ Ethernet เข้ากับส่วนของ Token Ring ได้ และถึงแม้ว่าระบบเครือข่ายทั้งคู่จะใช้โปรโตคอลที่แตกต่างกัน บริดจ์ก็ยังคงสามารถโยกย้ายแพ็กเก็ตข้อมูลระหว่างระบบเครือข่ายทั้งสองได้อยู่ดี
3. สวิตซ์ (Switch)
   สวิตซ์ หรือที่นิยมเรียกว่า อีเธอร์เนตสวิตซ์ (Ethernet Switch) จะเป็น บริดจ์แบบหลายช่องทาง (Multiport Bridge) ที่นิยมใช้ในระบบเครือข่าย LAN แบบ Ethernet เพื่อใช้เชื่อมต่อเครือข่ายหลายๆ เครือข่าย (Segment) เข้าด้วยกัน สวิตซ์จะช่วยลดการจราจรระหว่างเครือข่ายที่ไม่จำเป็น และเนื่องจากการเชื่อมต่อแต่ละช่องทางกระทำอยู่ภายในตัวสวิตซ์เอง ทำให้สามารถทำการแลกเปลี่ยนข้อมูลในแต่ละเครือข่าย (Switching) ได้อย่างรวดเร็วกว่าการใช้บริดจ์จำนวนหลายๆ ตัวเชื่อมต่อกัน
4. เราท์เตอร์ (Router)
   เราท์เตอร์ เป็นอุปกรณ์ที่ทำงานอยู่ในระดับที่สูงกว่าบริดจ์ทำให้สามารถใช้ในการเชื่อมต่อระหว่างเครือข่ายที่ใช้โปรโตคอลต่างกันได้ และสามารถทำการกรอง (Filter) เลือกเฉพาะชนิดของข้อมูลที่ระบุไว้ว่าให้ผ่านไปได้ทำให้ช่วยลดปัญหาการจราจรที่คับคั่งของข้อมูล และเพิ่มระดับความปลอดภัยของเครือข่าย นอกจากนี้ เราท์เตอร์ยังสามารถหาเส้นทางการส่งข้อมูลที่เหมาะสมให้โดยอัตโนมัติด้วย อย่างไรก็ดีเราท์เตอร์ จะเป็นอุปกรณ์ที่ขึ้นอยู่กับโปรโตคอล นั่นคือ ในการใช้งานจะต้องเลือกซื้อเราท์เตอร์ที่สนับสนุนโปรโตคอลเครือข่ายที่ต้องการจะเชื่อมต่อเข้าด้วยกัน
5. เกทเวย์ (Gateway)
   เกทเวย์ เป็นอุปกรณ์ที่มีหน้าที่ในการเชื่อมต่อและแปลงข้อมูลระหว่าง เครือข่ายที่แตกต่างกันทั้งในส่วนของโปรโตคอล และสถาปัตยกรรมเครือข่าย เช่น เชื่อมต่อและแปลงข้อมูลระหว่างระบบเครือข่าย LAN และระบบ Mainframe หรือเชื่อมระหว่างเครือข่าย SNA ของ IBM กับ DECNet ของ DEC เป็นต้น โดยปกติ เกทเวย์มักเป็น Software Package ที่ใช้งานบนเครื่องคอมพิวเตอร์เครื่องใดเครื่องหนึ่ง (ซึ่งทำให้เครื่องนั้นมีสถานะเกทเวย์) และมักใช้สำหรับเชื่อม Workstation เข้าสู่เครื่องที่เป็นเครื่องหลัก (Host) ทำให้เครื่องเป็น Workstation สามารถทำงาน ติดต่อกับเครื่องหลักได้ โดยไม่ต้องกังวลเกี่ยวกับข้อแตกต่างของระบบเลย

ขอบคุณ   http://irrigation.rid.go.th/

0 ความคิดเห็น:

แสดงความคิดเห็น